Approximate polytope ensemble for one-class classification
نویسندگان
چکیده
In this work, a new one-class classification ensemble strategy called approximate polytope ensemble is presented. The main contribution of the paper is threefold. First, the geometrical concept of convex hull is used to define the boundary of the target class defining the problem. Expansions and contractions of this geometrical structure are introduced in order to avoid over-fitting. Second, the decision whether a point belongs to the convex hull model in high dimensional spaces is approximated by means of random projections and an ensemble decision process. Finally, a tiling strategy is proposed in order to model nonconvex structures. Experimental results show that the proposed strategy is significantly better than state of the art one-class classification methods on over 200 datasets. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
A Research on Ensembles Method for One Class Classification Using Convex Hull Polytope Model
Classification is a data mining task that allocated similar data to categories or classes. One of the most general methods for classification is ensemble method which refers supervised learning. After generating classification rules we can apply those rules on unidentified data and achieve the results. In oneclass classification it is supposed that only information of one of the classes, the ta...
متن کاملValidation of Synoptic Station Data Using Ensemble Classification on Central Iran
Today, the use of data recorded in synoptic stations of the country is one of the most significant sources of applied research for researchers. Data recorded automatically or manually at synoptic, climatological, and other stations are analyzed for statistical analysis. In this research, the data recorded in the synoptic stations of Iran, which are used to determine the days of dust, were analy...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014